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Abstract
In this paper we present a review of the recent inelastic x-ray scattering
(IXS) studies on the high-frequency collective dynamics in topologically dis-
ordered systems. At mesoscopic exchanged momenta (Q ≈ 1–10 nm−1),
these IXS studies allowed experimental demonstration of the existence in
glasses of propagating acoustic phonon-like excitations whose characteristics
are qualitatively independent from the specific system investigated. These
universal features are as follows: (i) on the small-Q side of the momentum
region examined, the existence of a linear dispersion for the excitation frequency
of the longitudinal excitations; this dispersion starts to bend downward with
increasing Q-value; (ii) a quadratic Q-dependence of the excitation width,
�(Q), in the Q-region where �(Q) is linear; (iii) temperature independence
of this excitation; and (iv) the appearance—with increasing Q-value—of the
signature of the collective transverse dynamics. In this paper, using the case
of vitreous silica as a representative example, we present the IXS evidence for
these universal features and we compare them with the outcome of computer
simulations. Finally, we will show that all the observed characteristics of the
high-frequency vibrations can be retrieved within the ‘harmonic’ approximation
of the glass dynamics.

1. Introduction

The discovery that disordered materials, such as glasses and liquids, support the propagation
of sound waves in the terahertz frequency region has renewed interest in a long-standing issue:
the nature of collective excitations in disordered solids. In the last few years, progress in
the understanding of this subject was achieved with the aid of new experimental facilities,
improved numerical techniques, and, more recently, new theoretical tools [1, 2].

From the experimental point of view, the collective excitations are often studied through
the determination of the dynamic structure factor S(Q,ω), i.e. the time Fourier transform of
the collective intermediate-scattering function F(Q, t) which, in turn, is the space Fourier
transform of the density self-correlation function. S(Q,ω) has been widely studied in the
past by the Brillouin light scattering (BLS) and inelastic neutron scattering (INS) techniques.
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In the BLS technique, the accessible exchanged momenta (Q) are limited to the range
Q < 10−2 nm−1 because of the momentum carried by visible light photons. In INS, due to the
kinematic limitation associated with the neutron mass, the small-Q range is not accessible and
the allowed Q–ω region does not cover the dispersion relation of the collective excitations,
except for a few favourable systems with not-too-high sound velocity. Previous techniques
left an unexplored gap in the Q-space, corresponding to exchanged momentum approaching
the inverse of the inter-particle separation a (the mesoscopic region, Q = 1–10 nm−1). This
Q-region is important, because here the collective dynamics undergoes a transition from a
hydrodynamic behaviour to a microscopic single-particle one. Investigation of S(Q,ω) in
this mesoscopic region has become possible recently thanks to the development of the IXS
technique [3]; many systems, ranging from glasses [3–12] to liquids [13,14], have been studied
with this technique. In addition to specific quantitative differences among different systems,
all the glasses investigated show some qualitative common features that can be summarized
as follows:

(i) Propagating acoustic-like excitations exist up to a maximum Q-value Qm (Qma ≈ 1–3
depending on the system fragility). Similarly to well defined peaks, they have an excitation
frequency �(Q).

(ii) �(Q) versus Q shows an almost linear dispersion relation, and its slope, in the Q → 0
limit, extrapolates to the macroscopic sound velocity.

(iii) The width of the Brillouin peaks, �(Q), follows a power law, �(Q) = DQα , with α = 2
within the currently available statistical accuracy.

(iv) The value of D does not depend significantly on temperature, indicating that this
broadening (i.e. the sound attenuation) in the high-frequency region does not have a
dynamic origin, but is instead due to the disorder [15].

(v) Finally, at large Q-values, a second peak appears in S(Q,ω) at frequencies smaller than
that of the longitudinal acoustic excitations. This peak can be ascribed to the transverse
acoustic dynamics, whose signature is observed in the dynamic structure factor as a
consequence of the absence of pure polarization of the vibrations in a topologically
disordered system.

These general features of S(Q,ω) have been confirmed by numerical calculations, both
via standard molecular dynamics (MD) simulations of glasses and via normal-mode analysis
(NMA) within the harmonic approximation of the glasses themselves [16–19]. Larger and
larger systems have been investigated in the last few years thanks to the improved computing
facilities and to the application of new numerical schemes, such as the method of moments [20],
to evaluate S(Q,ω). The numerical simulations also allowed clarification of an important
issue concerning the origin of the sound attenuation (i.e. the excitation broadening) in glasses.
In particular, by comparing numerical simulations of topologically disordered systems with
those of substitutionally disordered ones, it has been shown that—in the ‘true’ topologically
disordered systems—the excitation broadening follows a Q2-law, while �(Q) shows a Q4-
dependence in the case of substitutional (or lattice) disorder [21–24].

More recently Götze et al extended the mode-coupling theory (MCT) calculation scheme
to the case of the non-ergodic, glassy phase. This theory, as shown numerically for a hard-
sphere model, accounts for all the features of the dynamic structure factor listed above. A
further prediction of the theory, namely the presence of a positive dispersion of the sound
velocity, i.e. a small upwards bend of the dispersion relation, has not yet been experimentally
detected. In subsequent MD investigations this positive dispersion of the sound velocity has
been observed. In fact, it has been tentatively ascribed to a relaxation process taking place
in harmonic disordered systems [25]. This interpretation, at first sight, could seem to present
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a contradiction, because the ‘relaxation processes’ concept is usually related to phenomena
like ‘viscous flow’ and ‘anharmonicity’, and it is difficult to understand the meaning of a
relaxation process in a harmonic system. This has allowed extension of the concept of
‘relaxation process’. In fact, on general grounds, a relaxation process can be pictured as
the macroscopic manifestation of microscopic phenomena allowing the energy stored in a
given ‘mode’ to relax towards other degrees of freedom. S(Q,ω), as can be seen for example
through the fluctuation-dissipation relation, reflects the time evolution of the energy initially
stored (t = t0) in a plane wave (PW) of wavelength 2π/Q. As the PW is certainly not an
eigenstate of the disordered system, at t > t0 there will be a transfer of amplitude from this
PW towards other PWs of different Q-values. This process is controlled by the projection of
the PW considered into the true normal modes of the topologically disordered glassy structure,
and the flow takes place on a timescale τ which is also determined by these projections. This
mechanism gives rise to the observed relaxation process phenomenology.

In this article we illustrate the state-of-the-art inelastic x-ray scattering (IXS) studies on
the collective excitations in glasses by using the specific case of vitreous silica, v-SiO2, as
an example. Vitreous silica, besides being the best known example of glass, is particularly
relevant in the present context. Indeed, while on one hand the above-mentioned universal
characteristics of the high-frequency dynamics are nowadays recognized by the scientific
community to be valid in most of systems investigated, v-SiO2 represents an exception, and
at least two different interpretations of the IXS data exist3. It is our aim to present a critical
review of the existing data and their interpretations. To this end, we will also make use of the
results of a molecular dynamics simulation study of v-SiO2. In the next section we will show
how—and to what degree of approximation—the IXS experiment determines the dynamic
structure factors. We also discuss the experimental set-up. In the following section we give
the theoretical background, aiming to put the interpretation of the dynamic structure factor of
disordered systems in terms of few statistical mechanics principles on a sound basis. Then we
will present a few details of the MD investigations and the results obtained in the specific case
of vitreous silica.

2. The IXS experiment

2.1. IXS: what does the technique measure?

An IXS experiment is based on a scattering process where a beam of photons, prepared
with energy h̄ωi , momentum h̄ki , and polarization εi , impinge on a sample, and one
detects the photons scattered with a specific energy h̄ωf , momentum h̄kf , and polarization
εf . The scattered photons carry information on the spectrum of the excitations of energy
h̄ω = h̄ωi−h̄ωf and momentum h̄Q = h̄ki−h̄kf which are created (or destroyed) in the target
during the interaction. In the limit of weak interaction between the photons and the sample, the
scattering process can be described in the framework of the linear response theory. Here, the
differential scattering cross-section per unit frequency ω and unit solid angle, �, ∂2σ/∂ω ∂�,
is determined by a perturbation treatment of the photon–electron interaction Hamiltonian. In
the case of photons in the ≈10 keV range, in the absence of resonant conditions and considering
energies h̄ω in the range of the typical acoustic photon energies (less than ≈100 meV), the

3 The interpretation of the vitreous silica IXS data along the same lines as for all the other glasses can be found in
references [6,9,10,12]. An alternative interpretation, where the broadening of the excitations is supposed to follow a
�(Q) ∝ Q4 law, is reported in references [5,11]. It worth noting that a completely different interpretation of the IXS
spectra in glasses is proposed in reference [26].
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radiation–electron interaction Hamiltonian reduces to the Thomson term:

Hint = 1

2
r0

∑
j

A2(rj , t) (1)

where r0 = e2/mec
2 is the classical electron radius, e is the electron charge, me is the electron

mass, A(r, t) is the electromagnetic field potential vector, and rj is the position of the j th
electron in the sample. We have neglected

(i) the so-called ‘magnetic’ terms, that arise from the coupling of the electromagnetic field
with the electron spin and whose order of magnitude is ≈h̄ωi/mec

2 smaller than the
Thomson term;

(ii) the ∇·A(r, t) term, which is relevant in resonant conditions and vanishing in the ω � ωi

limit of interest here; and
(iii) the direct photon–nuclei interaction term, whose order of magnitude is me/mn smaller

than the photon–electron interaction term of equation (1). Here mn is the nuclear mass.

On applying the first-order perturbation theory—or the Fermi golden rule—and the adiabatic
approximation (i.e. the factorization of the electronic and nuclear eigenstates), one gets

∂2σ

∂ω ∂�
= r2

0 (εi · εf )
2 ki

kf

∑
In,Fn

PIn |〈Fn|
∑
j

fj (Q)eiQ·Rj |In〉|2δ(ω − ωf − ωi). (2)

Here |In〉 (|Fn〉) are the initial (final) nuclear states; PIn represents the thermal population of
the initial states and fj (Q) is the form factor of the j th particle whose centre-of-mass position
is Rj . The form factor is the space Fourier transform of the electron-density distribution. In the
case of a monatomic system, fj (Q) = f (Q) independently on the j th atom, and equation (2)
can be related to the dynamic structure factor, S(Q,ω), for which the expression is

S(Q,ω) = 1

N

∑
In,Fn

PIn |〈Fn|
∑
j

eiQ·Rj |In〉|2δ(ω − ωf − ωi). (3)

In fact the scattering cross-section can be written as

∂2σ

∂ω ∂�
= Nr2

0 (εi · εf )
2 ki

kf
|f (Q)|2S(Q,ω) (4)

and thus—in this simple case of monatomic systems—the inelastic x-ray scattering cross-
section is directly proportional to S(Q,ω). In cases—like that of vitreous silica—where more
than one atomic species is present in the sample, one defines a partial dynamic structure factor,
Sαβ(Q,ω), as follows (here α and β label the atomic species):

Sαβ(Q,ω) = 1

N

∑
In,Fn

PIn

∑
ij

〈Fn|eiQ·Rα
i |In〉〈In|e−iQ·Rβ

j |Fn〉δ(ω − ωf − ωi) (5)

and the scattering cross-section is given by

∂2σ

∂ω ∂�
= Nr2

0 (εi · εf )
2 ki

kf

∑
αβ

cαcβfα(Q)fβ(Q)Sαβ(Q,ω). (6)

Here fα(Q) is the atomic form factor for the species α and cα is the concentration. In the
Q → 0 limit, the form factor assumes the value Zα , the number of electrons of the atom α.
In the specific case of vitreous silica, ZSi = 14 and ZO = 8, and these values are actually
proportional to the atomic masses, MSi = 28 and MO = 16. Therefore for vitreous silica, in
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the small-Q limit, the scattering cross-section for x-rays becomes proportional to the density–
density dynamic structure factor:

Sρρ(Q,ω) =
∑
αβ

cαcβ
MαMβ

M2
tot

Sαβ(Q,ω) (7)

and
∂2σ

∂ω ∂�
∝ r2

0 (εi · εf )
2 ki

kf
Sρρ(Q,ω). (8)

The quantity Mtot in equation (7) is the total mass of the unit formula (Mtot = 2MO + MSi in
the present case). The proportionality between the scattering signal and the density–density
dynamic structure factor is a peculiarity of vitreous silica and of the IXS techniques (the same
does not hold, for example, for neutron scattering, as the thermal neutron scattering lengths are
not proportional to the atomic masses). Moreover, the simple relation holds only in the small-
Q limit: with increasing Q-value the form factors of oxygen and silicon decrease following
different laws, thus invalidating the relation fSi(Q)/fO(Q) ∝ MSi/MO.

In conclusion, in the specific case of vitreous silica, the IXS signal at low Q can be well
approximated by the density–density dynamic structure factor, but with increasing Q the other
components—the charge–charge dynamic structure factor and the cross-terms—start to play
a role.

2.2. The IXS beamlines at the European Synchrotron Radiation Facility

All the experiments discussed in this paper were carried out at the very-high-energy-resolution
IXS beamlines ID16 and ID28 at the European Synchrotron Radiation Facility (ESRF).
The x-ray source is made out of two undulators. The x-ray radiation utilized is the one
chosen to optimize the photon flux at the energy used in the experiments. After being pre-
monochromatized to a bandwidth of 10−4 by a cryogenically cooled Si(1 1 1) double-crystal
monochromator, the beam is backscattered by the main monochromator, consisting of a flat,
symmetrically cut, silicon crystal oriented along the (1 1 1) direction. The Bragg angle of the
monochromator is 89.98◦. The family of crystalline planes used by the monochromator has
to be chosen as a compromise as regards resolution and output flux requirements; the present
experiments were carried at the Si(9 9 9) and Si(11 11 11) reflections (E = 17 794 eV and
E = 21 748 eV respectively), which allows overall instrumental energy resolutions of 3.2 and
1.6 meV full width at half-maximum (FWHM) and fluxes of 5×109 and 7×108 photons on the
sample with 200 mA current in the storage ring [27]. The monochromatized beam is focused
on the sample by a grazing-incidence toroidal mirror to a spot size of 100 (vertical) × 300
(horizontal) µm2 FWHM and with a divergence of 40 (vertical) × 120 (horizontal) µrad2

FWHM. The radiation scattered in the nearly forward direction is analysed by five independent
spherical analyser systems, mounted in a row with a constant angular offset of 1.3◦ on an arm
7 m long. Such an arm covers scattering angles in the range between θs = 0◦ and 13◦. The
exchanged wavevector, Q, can be varied accordingly to the relation Q = 2ki sin(θs/2). At
the two reflections, the angular offset between two neighbouring analysers corresponds to a
difference of 2.4◦ and 3 nm−1 in exchanged momentum. Each analyser consists of ≈10 000
small silicon crystals of surface size 0.7×0.7 mm2 and 3 mm height, glued with ≈10′′ tolerance
in their relative alignment on a spherical substrate of 6.5 m radius [27]. The analysers operate
at the same reflection as the monochromator in the Rowland geometry with 1:1 magnification;
each of them collects the radiation scattered at the chosen scattering angle, and focuses it onto
a Peltier-cooled, Si-diode detector. The dark counts due to the electronic and environmental
noise amount to ≈1 counts min−1. The detector energy resolution is ≈400 eV. Slits in front of
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the analysers set the desired momentum resolution, ≈0.4 nm−1 FWHM in the present cases.
The energy scans are performed by varying the monochromator temperature with respect to
that of the analyser crystals; the temperature of the main monochromator and analysers is
controlled with a precision of ≈0.2 mK.

2.3. The experiments

The experiments discussed here were performed on Suprasil vitreous silica samples purchased
from Goodfellow. The samples were 2 mm diameter rods, with the cylinder axis orthogonal
to the scattering plane. The sample diameter was chosen to be comparable to the x-ray photo-
absorption length and to give negligible multiple scattering. The sample quality was tested by
measuring its static structure factor S(Q), which was found to be in agreement with previous
determinations. The v-SiO2 rod was placed inside a graphite or tantalum tube, which was
resistively heated in vacuum. A 1 mm diameter hole orthogonal to the cylinder axis allowed
the passage of the incoming and scattered photons without scattering from the sample heater.
The temperature of the sample in the high-temperature experiment was measured with an
optical pyrometer.

3. The molecular dynamics simulation

Standard microcanonical MD simulations with periodic boundary conditions were carried out
for systems composed of N = 648 and N = 5184 atoms enclosed in cubic boxes of length
L = 21.39 Å and L = 42.78 Å respectively (mass density ρ = 2.20 g cm−3) [17, 18]. We
used the two-and-three-body interaction potential proposed by Vashista et al [28] which gives,
compared with the two-body potentials which are simpler to deal with, a better description
of the structural properties of v-SiO2. The electrostatic long-range interactions were taken
into account by the tapered-reaction-field method and the equations of motion were integrated
using the leapfrog algorithm with a time step of /t = 0.5 fs. A β-cristobalite crystal was
melted at 15 000 K and equilibrated for a long time so that the initial crystalline state had no
effect on the final configuration. The system was then cooled and thermalized through different
states ranging from 5000 K down to 300 K. Two different techniques have been adopted in
performing the dynamical study:

(i) the finite-temperature (T = 1500 K, 1000 K, 600 K, and 300 K) atomic dynamics of
the system in the glassy state was followed by recording instantaneous configurations in
different MD runs of 15 ps duration;

(ii) the dynamical matrix (the Hessian of the potential energy function) was calculated
for different potential energy minima, reached by a steepest-descent method from the
equilibrium configurations [29], and then either diagonalized to obtain a complete set
of eigenvalues and eigenvectors or used in the application of the spectral moments
method [20, 30].

The reliability of the harmonic approximation is probed by means of the agreement
between the NMA (ii) and the MD (i) results at non-zero temperature (300 K). Using MD and
NMA, we investigated numerically the x-ray-weighted Sx(Q,ω) dynamic structure factors
for v-SiO2. As specified above, the presence of two distinct atomic species requires one to
calculate the partial dynamic structure factors, which in the classical limits—such as in our
MD simulation—can be written as

Sαβ(Q,ω) = 1

N

∫ ∞

−∞

dt

2π
e−iωt

∑
ij

〈eiQ·Rα
j (t)e−iQ·Rβ

i (0)〉 (9)
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where the summations over i and j run over all atoms of types α and β respectively and Rα
j (t)

is the position vector of atom j at time t . This function can be evaluated directly using the MD
atomic trajectories. In the NMA approach, i.e. in the harmonic approximation, one introduces
the displacements {ui} from the equilibrium positions {Xi}, expands the exponential function
appearing in equation (9) with respect to Q ·ui , and, finally, expands the atomic displacements
in terms of the normal modes. Up to the first order in Q · ui , i.e. in the one-excitation
approximation, one gets Sαβ(Q,ω) ≈ S

(0)
αβ (Q,ω) + S

(1)
αβ (Q,ω), with

S
(0)
αβ (Q,ω) = δ(ω)

∑
ij

e−Wij e−iQ·(Xβ

j −Xα
i )

S
(1)
αβ (Q,ω) = kBT√

MαMβ

∑
p

δ(ω − ωp)
1

ω2

∑
ij

e−Wij (Q · ei (p))(Q · ej (p))e−iQ·(Xβ

j −Xα
i )

(10)

where the index p labels the normal modes of the systems, {ωp} and {ei (p)} are the respective
eigenvalues and eigenvectors, and Wij is the Debye–Waller factor exponent. The dynamic
structure factor in the harmonic approximation consists of the sum of a δ-function centred at
zero frequency and an inelastic contribution. Using equation (10), the x-ray-weighted dynamic
structure factor is readily calculated according to equation (7).

In a similar way, from the harmonic approximation of the dynamics and in the ‘one-
excitation’ approximation, one can calculate the current spectra. The longitudinal spectrum is
given by

C
(1)
Lαβ(Q,ω) = kBT√

MαMβ

∑
p

δ(ω − ωp)
∑
ij

e−Wij (Q̂ · ei (p))(Q̂ · ej (p))e−iQ·(Xβ

j −Xα
i ) (11)

and the transverse spectrum by

C
(1)
T αβ(Q,ω) = kBT√

MαMβ

∑
p

δ(ω − ωp)
∑
ij

e−Wij (Q̂ × ei (p)) · (Q̂ × ej (p))e−iQ·(Xβ

j −Xα
i ).

(12)

Here the hats indicate unit vectors. The first quantity is simply related to the dynamic
structure factor viaCL(Q,ω) = ω2/Q2S(Q,ω), while the second one is not directly accessible
experimentally in disordered systems.

4. The dynamic structure factor in disorder systems

There is a formally exact procedure for deriving an expression for the dynamic structure
factor based on the description of the density-fluctuation correlation function F(Q, t) =
〈 δρQ̄(t) δρ∗

Q̄
(0)〉, i.e. the frequency Fourier transform of S(Q,ω), in terms of the generalized

Langevin equation [31]:

F̈ (Q, t) + ω2
0F(Q, t) +

∫ t

0
m(Q, t − t ′)Ḟ (Q, t ′) dt ′ = 0 (13)

where ω2
0 = kBTQ2/MS(Q), m(Q, t) is the ‘memory function’, and S(Q) is the static

structure factor. This equation is ‘exact’, but all the difficulties associated with the calculation
of F(Q, t) are now associated with obtaining m(Q, t). There is, however, an advantage in this
formulation: it resides in the fact that—independently of the choice of m(Q, t)—the first two



9148 G Ruocco and F Sette

sum rules for S(Q,ω) are automatically satisfied:∫
dω S(Q,ω) = F(Q, t = 0) = S(Q)

∫
dω ω2S(Q,ω) = −F̈ (Q, t = 0) = kBT

M
Q2.

(14)

By Fourier transformation of equation (13), it is easy to show that

S(Q,ω) = 1

π
S(Q)

ω2
0m

′(Q,ω)

[ω2 − ω2
0 + ωm′′(Q,ω)]2 + [ωm′(Q,ω)]2

(15)

where m′(Q,ω) and m′′(Q,ω) are the real and imaginary parts of the time Fourier transform
of the memory function. In the ωτα � 1 limit, a limit that is certainly reached in the case
of glassy samples, the memory function can be considered as the sum of two contributions: a
constant—which reflects the frozenα-process—plus a very fast decay in a short time. The latter
contribution to the memory function—often referred to as a ‘microscopic’ or ‘instantaneous’
process—is usually represented as a delta function. Introducing the two parameters 2�(Q) and
/2(Q) which represent respectively the areas of the ‘instantaneous’ process and the long-time
limit of m(Q, t), the memory function is approximated by

m(Q, t) = 2�(Q)δ(t) + /2
α(Q) (16)

and therefore, using equation (15), S(Q,ω) reduces to

S(Q,ω) = S(Q)

[
fQδ(ω) + (1 − fQ)

1

π

�2(Q)�(Q)

(ω2 − �2(Q))2 + ω2�2(Q)

]
(17)

where

�(Q) =
√
/2

α(Q) + ω2
0 fQ = 1 − ω2

0/�
2(Q).

This expression is the sum of an elastic line (the frozen α-process) and an inelastic feature
which is formally identical to a damped harmonic oscillator (DHO) function; the central line
accounts for a fraction fQ—the Debye–Waller or non-ergodicity factor—of the total intensity.

Recently it has been shown via MD [25] that the ‘microscopic’ contribution to the memory
function cannot be represented by a delta function. There are, indeed, clear indications
that this ‘microscopic’ part is responsible for a positive dispersion of the sound velocity in
‘harmonic’ model glasses [25], and is responsible for the majority of the positive dispersion of
the sound velocity in liquids [32]. The simplest generalization of the delta function appearing
in equation (16) considers a Debye-like ‘microscopic’ contribution to the memory function:

m(Q, t) = /2
µ(Q)e−t/τµ + /2

α(Q). (18)

The quantity τµ entering in this equation is the characteristic time of the ‘microscopic’
contribution to the memory function. Obviously, whenever �τµ � 1, equation (18) produces
for S(Q,ω) a DHO-like lineshape with

�(Q) =
√
/2

α(Q) + ω2
0 �(Q) = /2

µ(Q)τµ.

In the past, in analysing the IXS spectra of glasses, the simplified DHO expression for S(Q,ω)

has been used; no systematic deviation of the experimental data from the fitting lineshape was
noticed. In the following we will adopt equation (17) as the fitting function.

It is worth noting that—despite the fact that m(Q, t) is usually referred to as the
‘generalized viscosity’—the origin of the microscopic contribution to the memory function
is not necessarily a ‘viscous’ process. On the contrary, as shown in reference [25], a micro-
scopic part of m(Q, t) has been found through MD in harmonic model glasses also, thus
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indicating that the origin of such a contribution—mainly responsible for the high-frequency
sound attenuation—cannot be related to dynamic processes (such as viscous damping or
anharmonicity).

5. Results and discussion

5.1. Qualitative observation of Brillouin peaks in v-SiO2

To illustrate the main features of the IXS signal, in figure 1 we report two spectra taken at
Q = 1 and 2 nm−1 for vitreous SiO2 at T = 1075 K [3]. In figure 1(A), the total spectra
are compared with the experimentally determined resolution function, which has been aligned
with the dominant peak centred at zero energy transfer (elastic peak). This peak—as discussed
before—is due to the frozen density fluctuations existing in glasses at all Q-values, and its
broadening is due to the finite energy resolution. On both sides of this elastic peak, one
observes the presence of inelastic features, emphasized in the insets. The difference spectra,
obtained by subtracting the central peak represented by the resolution function from the data,
are reported in figure 1(B) in order to highlight the Q-dependence of the inelastic signal. One
can observe that the average energy position and width of this signal increase with increasing
Q. In particular, the two arrows show that the energy position doubles on doubling the Q-
value. This behaviour is the one expected for propagating excitations, dispersing with a linear
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Figure 1. (A) IXS spectra (◦) of vitreous silica taken at T = 1075 K at Q = 1 and 2 nm−1, with
total integration times of 415 and 800 s, respectively. The full lines are the measured resolution
functions, which have been aligned and scaled to the central peak. The two insets are present to
emphasize the inelastic signal on either side of the central peak. (B) Difference spectra, obtained
by the subtraction of the scaled resolution function from the spectra reported in (A). The arrows
indicate the inelastic peak energy positions, which scale approximately with the Q-transfer.
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relation. This qualitative result has been found to be a general feature of all the liquids and
glasses investigated so far in the Q-region below ≈5 nm−1.

This qualitative procedure has the advantage of showing important behaviours without
invoking specific models. Obviously, however, the difference spectra of figure 1(B), derived
from the measured spectra of figure 1(A), contain a high degree of arbitrariness. Indeed, as
the central peak is much more intense than the inelastic signal—by a factor of ≈20 in the
present case—a small modification of the (unknown!) factor that is used to scale the intensity
of the resolution function to that of the elastic peak in the IXS spectrum strongly modifies
aspects of the difference signal, especially at low energy transfer. As an example, in figure 1
the normalization factor has been chosen in such a way as to force the inelastic signal to vanish
at ω = 0, but there are no theoretical reasons or experimental evidence for such a behaviour.
It is clear that the ‘subtraction’ procedure presented cannot be used to draw any quantitative
conclusions regarding the features of the inelastic signal, and a more detailed fitting procedure
is needed4.

5.2. Fits of the IXS data using the DHO model

The remainder of this paper will use the procedure developed in section 4 and adopted in
previous published works [4, 13]. In fact we will present the results obtained by fitting
the experimental data to the previously derived model (equation (17)) convoluted with the
experimentally determined resolution function. The model in equation (17), however, does
not take into account the quantum nature of the systems investigated (which shows up mainly
in the asymmetry of the Brillouin peaks according to the detailed-balance principle). In order
to provide a fitting function with the proper frequency asymmetry, the following scheme is
often adopted:

Sq(Q,ω) = h̄ω

kBT
[n(ω) + 1]S(Q,ω) (19)

where Sq(Q,ω) is the ‘quantum’ dynamic structure factor utilized to fit the spectra, S(Q,ω)

is the ‘classic’ (symmetric) dynamic structure factor, and n(ω) is the Bose population factor.
With this choice, obviously,

Sq(Q,ω) = exp(h̄ω/kBT )Sq(Q,−ω) lim
ω→0

Sq(Q,ω) = S(Q,ω).

As a representative example of the fitting procedure, the inelastic x-ray scattering spectrum
of v-SiO2 at T = 1375 K and Q = 1 nm−1 is reported in figure 2 together with its best
fit. A standard χ2-minimization procedure has been utilized to determine the relevant fitting
parameters, namely the excitation energy �(Q), the excitation width �(Q), and the elastic-to-
inelastic intensity ratio (or non-ergodicity factor, or Debye–Waller factor) fQ. The spectrum
(open circles) is dominated by an intense elastic peak, whose shape is determined by the
instrumental resolution function (dotted line), of FWHM = 1.6 meV in the present case. At
the sides of the central peak, well above the tails of the elastic scattering broadened by the
resolution function, the inelastic signal is clearly visible. The fitting function is reported as a
full line, and it agrees very well with the IXS data. Also shown in figure 2 are the individual
(elastic and inelastic) contributions to the fitting function. The bottom panel of figure 2 shows
a close-up of the region where the inelastic intensity is more visible, while the middle panel
shows the residual of the fit reported in units of the standard deviation. The observed inelastic
signal is due to collective density fluctuations, and it is observed to change with Q at the
Q-points investigated.

4 The procedure of subtracting the elastic peak from the spectra with an arbitrary normalization factor has been used
in reference [11] to establish the validity of a specific model that predicts vanishing intensity at zero frequency.
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Figure 2. (A) X-ray spectra of v-SiO2 at T = 1375 K and Q = 1 nm−1. The data are shown
together with their best fits (full line) and the individual contributions to the fitting function: the
elastic peak (dashed line) and inelastic components (dotted line). (B) The residual (in units of σ ) of
the fit. (C) As (A), but with an expanded vertical scale, used to emphasize the inelastic contribution
to the spectrum.

The inelastic x-ray scattering spectra taken at T = 1100 K in the 1 � Q � 4 nm−1 region
are shown in figure 3. These were the first IXS measurements to be made on v-SiO2, and,
unlike the case for figure 1 and 2, they were measured with an energy resolution of 3.2 meV. The
dashed lines represent the resolution functions, and are aligned and scaled to the central peak
in each spectrum. As seen from the theoretical fitting function for the inelastic contribution to
the dynamic structure factor, the excitations are characterized by a clear Q-dependence.

As further examples of IXS spectra, in figure 4 we report the temperature dependence of
the spectra at the fixed exchanged momentum Q = 1.6 nm−1 [10]. This study was performed
to link the observed excitations to the anomalous non-Debye behaviour of the density of states
(DOS) in this glass. The main anomaly is an excess of states at E ≈ 5 meV, and this gives
rise to a feature in the DOS referred to as the boson peak (BP). The IXS spectra were collected
at a Q-value chosen such that—at room temperature—the corresponding excitation energies
are in the range of the boson peak energy. It is possible to observe directly from the raw data
in figure 4 that, in addition to the expected increase of intensity with T , there is also a mild
T -dependence of the excitation energy. This dependence is emphasized in the inset of figure 4,
where �(Q, T ) is reported versus T . A T -dependence of the sound velocity was also observed
in low-frequency measurements, but it is much more evident in the high-frequency region
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Figure 3. X-ray spectra of v-SiO2 at T = 1100 K taken at different Q-values. The data are shown
together with their best fits (full lines) and the individual contributions to the fitting function: the
elastic peak (dashed lines) and inelastic components (dotted lines).

examined here. This difference in T -dependence of the low- and high-Q excitation regimes
indicates a temperature deformation of the acoustic mode dispersion relation. Moreover, the
comparison between �(Q, T ) and the T -behaviour of the boson peak position has provided a
strong indication that the vibrations probed by IXS contribute to the BP [10].

Let us now turn our attention to the dependence of the parameters extracted from the
fits. A summary of the Q-dependence of �(Q), at the different measurement temperatures,
is reported in figure 5 for Q � 4 nm−1. It is possible to observe an almost linear dispersion
with Q, which starts to bend downwards with increasing Q-value. The small temperature
dependence of the excitation energy at fixed Q—emphasized in figure 4—is here masked by
the error bars.

The Q-dependence of the other relevant parameter, �(Q), is reported in figure 6 using
a log–log scale (full squares in the main figure; full diamonds, squares, and triangles in the
inset) together with those determined using other techniques [15]. The full line represents the
best fit to �(Q) determined by means of IXS, and has a slope of 1.95, thus indicating that
�(Q) ∝ Q2 over the whole IXS Q-range examined. This Q2-behaviour is consistent with
low-Q picosecond optical technique (POT) acoustic attenuation measurements on v-SiO2 at
room temperature [33]. The consistency between the IXS data, taken at T = 300, 1100, and
1375 K and at Q � 1 nm−1, and the data of reference [33], taken at T = 300 K and at
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line) indicated by the low-T BLS data.

Q-values an order of magnitude smaller, is in fact excellent. This behaviour indicates that:
(i) the Q2-dependence of � is genuine; and (ii) there is no visible temperature dependence of
the linewidths of the excitations in the range between room temperature and 1375 K in this
high-Q region.

There is, however, a significant inconsistency between the extrapolation of �(Q) at low
Q and the values measured using BLS [34]. This fact, together with the strong T -dependence
observed below ≈100 K in the BLS determination of �(Q) (see figure 7), leaves open the
question of the existence in vitreous silica of a ‘fast’ relaxation process influencing the collective
excitations in the GHz range and below.

The Q2-dependence of �(Q) in the high-Q region, together with the linear dependence
of �(Q), naturally leads to the existence of a specific Q-value, Q = Qm, where the condition
�(Q) = �(Q) is fulfilled. This condition can be interpreted as the point in the dispersion
relation describing the transition of the collective dynamics from a propagating longitudinal
acoustic regime to excitations that are still spatially extended but no longer propagating. In
vitreous silica this threshold is found at Qm ≈ 3.5 nm−1 (E ≈ 10 meV). Obviously this
Q-point does not mark a sharp transition in the character of the modes, but locates a region in
Q-space where a continuous fading out of the propagating character takes place.

5.3. Comparison among DHO and effective-medium approximation models for v-SiO2

The picture discussed earlier casts vitreous silica in the same phenomenology as was identified
by means of IXS for the other glasses investigated so far. This picture, together with its
theoretical background, has been criticized in references [5, 7]. There, the analysis of the
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Q ≈ 0.036 nm−1 (◦ and⊗) andQ ≈ 0.025 nm−1 (⊕), the full circles to IXS data atQ = 1.6 nm−1,
and the full squares to MD simulations in the harmonic (T = 0 K) limit.

IXS spectra of vitreous silica has been performed using a different model for S(Q,ω)—the
so-called effective-medium approximation (EMA) model—that assumes the existence of a
threshold frequency (ωco) between propagation and localization of the collective modes. This
crossover takes place as a consequence of the strong elastic scattering of the excitations from
inhomogeneity in the glassy structure. Accordingly, the Q-behaviour of �(Q) is expected to
be �(Q) ∝ Q4. Unfortunately, the differences between the S(Q,ω) lineshape predicted by
the EMA model and by the generalized Langevin equation with the instantaneous memory
function approximation (equation (17)) are substantial only at low frequency. Here the EMA
S(Q,ω) vanishes in the ω → 0 limit while the DHO one reaches, in the same limit, a finite
value. The presence of the intense elastic peak in the experimental data, however, has so
far prevented discrimination between the two models. These issues have been investigated
further using two different approaches. The first one takes advantage of MD data to simulate
the spectra. This allows one to circumvent the elastic peak problem. The second one takes
advantage of an experimental protocol consisting of measuring S(Q,ω) at constant ω rather
than at constant Q. This gives spectra where the effect of the elastic signal appears as an almost
flat background below the Brillouin peaks. We first discuss the outcome of the MD simulation
of vitreous silica.

As a first step, in order to show the reliability of the numerical simulation as regards
representing—at least at a qualitative level—the dynamic structure factor of vitreous silica,
we report in figure 8 the comparison of an INS determination of S(Q,ω) (open circles) with
the neutron-weighted dynamic structure factor Sn(Q,E) calculated by MD simulation at the
same temperature. Both the simulation [18] and the experiment [35] were performed at
T ≈ 1100 K and at a constant energy E = 5.4 meV, corresponding to the position of the
boson. The comparison is satisfactory, and indicates the ability of the potential model adopted
(see section 3) to represent the high-frequency dynamics of vitreous silica. Having confidence
in the MD results, we have calculated the longitudinal current spectra CL(Q,ω) and compared
them with the predictions of the two models proposed to interpret the experimental data. The
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Figure 8. The Q-dependence of the inelastic neutron scattering from vitreous silica at the fixed
energy of 1.3 THz. The circles represent the data of reference [35] at T = 1104 K; the full line
shows the MD calculation in the harmonic limit from reference [18].

calculated quantity is the spectrum of the current CL(Q,ω) and not the dynamic structure
factor, for two reasons:

(i) the excitation frequency can be derived from the current spectra without any fitting
procedure (it is directly the maximum of the current spectra); and

(ii) the transverse current spectrum can also be calculated, thus giving important information
on the whole acoustic-like dynamics, as discussed below.

We show in figure 9, as an example, the longitudinal current spectrum at Q = 2.08 nm−1.
This is reported together with its best fit to the DHO model (see equation (17), full line) and
to the EMA model (reference [5], dashed line). The agreement favours the DHO model,
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Figure 9. Am example of a longitudinal current spectrum (at Q = 2.08 nm−1) calculated by
means of NMA (harmonic approximation) in reference [18] (open circles). The full and dashed
lines represent the best fit to the simulation data using the DHO and the EMA models respectively.
In the inset we report the Q-dependence of the crossover frequency ωco, one of the parameters of
the EMA model.
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especially in the contentious low-frequency region. Moreover, in the case of the EMA model,
reliable fits can be obtained just leaving the ωco-parameter free to vary for different Q-values.
In fact, as reported in the inset of figure 9, the crossover frequency ωco, that according to the
localization model should be Q-independent, is found to be strongly Q-dependent. Moreover,
this parameter, that should indicate the localization edge and is expected to coincide with the
boson peak energy, assumes values that are always higher than the energy of the boson peak.
These two significant contradictions seem to favour the theoretical approach based on the DHO
for modelling S(Q,ω) for vitreous silica in the Q-range considered.

The MD longitudinal current spectrum allows one to determine the parameter �(Q)—
derived from the current maxima—and �(Q)—derived from a fit to equation (17). These
parameters are compared to the experimental ones in figures 6 and 7. The data for �(Q) are
also shown on a linear scale in figure 10. One can observe a quantitative agreement, and,
in particular, the �(Q) values compare very well with those measured by means of IXS for
temperatures ranging from T = 300 to 1050 K: both sets of values show a �(Q) ∝ Q2

behaviour. Let us recall that the current spectra have been calculated in the harmonic
approximation, i.e. according to equation (10). Therefore, the agreement of the �(Q) values
found in the harmonic approximation with those measured in the real system strongly indicates
that the excitation broadening, in the Q-range investigated, is related to the structural disorder
rather than to anharmonicity, viscous damping, or other dynamical effects.
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Figure 10. The Q-dependence of the excitation broadening �(Q) derived from the fit of the DHO
model to the NMA current spectra (full circles) compared to the IXS data at T = 1050 K (open
circles).

The second route followed to discriminate between the two models gives direct exp-
erimental evidence on the existence for well defined Brillouin peaks in the IXS spectra of
amorphous silica at energies above the boson peak energy. In contrast to the approach taken
in the earlier discussion of the IXS experiments [5,6,9–11], where the spectra were measured
at constant Q and as a function of energy, now we discuss constant-ω cuts of S(Q,ω) taken
as a function of Q [12]. To appreciate the advantage of this approach, we recall that in the
constant-Q spectra, as a consequence of the finite energy resolution, the elastic component
gives rise to a tail ∼ω−2 whose intensity in the Brillouin peak energy region is often stronger
than that of the peak itself. Therefore, the extraction of the spectroscopic parameters of the
Brillouin peak necessarily requires a fitting procedure and the assumption of a model function
for S(Q,ω). In contrast, in the constant-ω measurements, the elastic contribution convoluted
with the instrumental response function gives rise to an almost Q-independent background
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which should not significantly affect the position and lineshape of the inelastic signal. This
approach allowed us to demonstrate the presence of a Brillouin peak at an energy larger than
EBP , as seen in figure 11 where the ‘inelastic’ contributions to S(Q,ω = constant)—derived
according to the procedure illustrate in reference [12]—are reported at selected constant ω-
values. Therefore, without any specific model for S(Q,ω), these measurements demonstrated
that the boson peak cannot mark the transition between propagating and localized dynamics
in vitreous silica.
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Figure 11. The inelastic contributions to the constant-E IXS spectra (circles) are reported together
with their error bars as a function of Q for two energies: (a) E = 8.5 meV; (b) E = 5.3 meV. The
full (dashed) lines are the parameter-free lineshapes calculated via the DHO and EMA models.
The numerical values of the parameters entering these functions are taken from references [6] and
[5] respectively. The two theoretical predictions have been multiplied by arbitrary scale factors.

In figure 11 we also report, as solid and dashed lines, the inelastic parts ofS(Q,ω) obtained
from equations (17) and the EMA model respectively. Both models have been convoluted with
the experimental resolution function. In calculating the theoretical expressions for S(Q,ω)

we have used the values of the parameters reported in references [6] and [5] respectively. The
only adjustable parameter is an intensity factor, which has been chosen arbitrarily. As can be
seen, the DHO model is in good agreement with both constant-ω spectra, where it accounts
for the presence of the Brillouin peak and the high-Q plateau, although the relative intensity
of these two main features is not completely reproduced. In contrast, the EMA model fails to
reproduce the existence of the observed Brillouin peak. This is not surprising, as the EMA
model is based on the assumption that at ≈5 meV (the BP energy) the vibrational modes in
vitreous silica become localized. This analysis further confirms the conclusions obtained using
the MD data.

5.4. High-Q behaviour and transverse dynamics

Another issue, becoming increasingly important, is the observation of an inelastic signal at
‘high’ Q-values, i.e. around and above the first sharp diffraction peak located, in vitreous silica,
at Q ≈ 22 nm−1. This signal has already been observed for v-SiO2 in INS (see for example
reference [5]), and it is clearly visible also in the constant-Q IXS spectra, as exemplified in
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figure 12. In these spectra, in fact, the inelastic signal at high Q has a large intensity, as
compared to the Brillouin peak, and a behaviour distinctly different from the dispersing trend
of the longitudinal acoustic excitations. It is worth noting that such inelastic intensity has
already been observed by means of IXS, MD simulations, and theoretical predictions in the
constant-Q cuts of S(Q,ω) for other glassy systems. On the theoretical side, the application
of the MCT formalism to the glassy phase allowed identification of the presence of one (or
two) secondary features (named the anomalous oscillatory peak—AOP—and/or oscillatory
peak—OP) in S(Q,ω) for hard-sphere [1] and rigid dipolar hard-sphere [36] systems. In [1]
and [36] these AOPs and/or OPs have been related to the boson peak. On the experimental
side, these secondary features have been clearly detected in liquid water and—by comparison
to the spectra of crystalline ice Ih—these have been ascribed to the transverse dynamics. This
interpretation has been confirmed by a subsequent MD simulation of liquid water [37]. In
the case of vitreous silica, the secondary feature has an almost Q-independent shape, and is
‘peaked’5 around 5 meV (i.e. close to the boson peak energy). Its intensity increases with
increasing Q. Similarly to the case for liquid water [37], one can identify its origin by taking
advantage of the MD results, and in particular of the possibility of calculating the transverse
current spectra.
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Figure 12. IXS spectra of v-SiO2 at T = 1200 K taken at constant Q (circles) at large Q-values:
(a) Q = 23 nm−1 and (b) Q = 32 nm−1. The full lines are the resolution functions aligned with
the elastic peaks.

In figures 13 and 14 we report the longitudinal (full lines) and transverse (dashed lines)
current spectra at selected Q-values in the regions of ‘small’ (Q < 8 nm−1) and ‘high’
(Q > 8 nm−1) Q respectively.

These spectra have been calculated—see reference [17]—in the harmonic and in the one-
excitation approximations according to equations (11), (12), and (7). These figures appear very
similar to those calculated by Horbach et al at finite temperature and with a different interaction
potential model [19]. Both CL(Q,ω) and CT (Q,ω) show the existence of two excitations

5 Strictly speaking it is not possible to identify a ‘peak’ frequency, as the inelastic signal appears to be a broad band
extending from low frequency (where the strong elastic line prevents identification of its shape) up to ≈10 meV.
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Figure 13. Longitudinal (full lines) and transverse
(dashed lines) current spectra obtained by NMA at the
‘small’ Q-values indicated, from reference [17].

Figure 14. Longitudinal (full lines) and transverse
(dashed lines) current spectra obtained by NMA at the
‘high’ Q-values indicated, from reference [17].

which become clearer and clearer with increasing Q. The high-frequency excitation disperses
with Q and appears at each Q-value in the longitudinal current spectra, while it shows up
as a bump in the transverse current spectra only at Q > 10 nm−1. This feature, obviously,
corresponds to the (quasi-) longitudinal sound branch discussed before.

The behaviour of the low-frequency excitation is in some sense opposite: it is always
present in the transverse current spectra, while it appears in the longitudinal current spectra
only at Q > 8 nm−1. At small Q, the low-frequency peak disperses with a sound velocity
of ≈3800 m s−1 and becomes almost non-dispersing at Q > 10 nm−1. (Let us call this
low-frequency feature—which is the main feature in the transverse current spectra and the
secondary feature in the longitudinal current spectra—the transverse mode.) Consequently, the
transverse current data provide grounds for interpreting the low-frequency intensity observed
in the INS and IXS experiments at high Q-values as due to this transverse dynamics. In fact,
the behaviour of the experimental data is fully consistent with the phenomenology associated
with the secondary feature in the MD longitudinal current spectra.

The possibility of observing the transverse dynamics in the longitudinal current spectra,
both in MD simulations and in the experiments, comes from the feature that the polarization
character of the modes in a disordered system is well defined only in the long-wavelength limit.
In contrast it is ill defined at short wavelengths, especially in the limit where the wavelength
is comparable to the scale of the topological disorder. In this limit it is no longer possible to
define a ‘pure’ transverse or longitudinal excitation. This explains why one can observe the
transverse dynamics in longitudinal spectra better with increasing Q-value. Consequently, on
the strength of this observation and thanks to the MD simulation, one can safely conclude that
the signal observed in S(Q,ω) at ≈5 meV at Q larger than 10 nm−1 by means of INS [5] and
IXS [12, 38] is associated with the transverse acoustic branch.
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This assignment has a further important implication. We notice that in the large-Q limit,
the transverse branch loses all dispersion character and, in the current spectra, is centred at an
energy of ≈20 meV (see figure 15). Moreover, inS(Q,ω), its broadening becomes comparable
to its energy position (E ≈ 5 meV). Consequently, one expects the density of vibrational states
associated with these modes to possibly show up as a bump at an energy very close to that where
this excitation is seen in the dynamic structure factor, i.e. at ≈5 meV. This energy corresponds
in fact to the location of the boson peak. Therefore, in this picture, the boson peak should not
be associated with the end of the longitudinal branch but with the high-frequency limit of the
transverse dynamics. This picture is in agreement with a recent theoretical work by Taraskin
et al which associates the boson peak with the glassy counterpart of the lowest-frequency
Van Hove singularity of the corresponding crystalline structure, which in SiO2 is due to the
transverse dynamics [22].
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Figure 15. Positions of the maxima of the longitudinal (full circles) and of the transverse (full
squares) current spectra. The crossed circles show the position of the second peak appearing—at
high Q—at frequency smaller than that of the main peak in the longitudinal current spectrum.

6. Conclusions

The analysis presented in this work summarizes the contribution of the IXS technique in the
study of the high-frequency dynamics of vitreous silica. The IXS work is put into perspective
with the contributions of other experimental tools such as INS, BLS and the POT, and of
numerical and theoretical methods. We also summarize the present understanding of the
transition of the collective dynamics from a propagating to a non-propagating regime in this
glass. In this respect, a theoretical framework based on the general formalism of the Langevin
equation gives an account of the experimental findings, and shows that the sound attenuation in
the high-frequency limit considered is determined by the topological disorder. Finally, study
of the inelastic signal at high Q-values suggests that the boson peak is related to the high-Q
limit of the transverse dynamics. It is our opinion that the results reviewed here for vitreous
silica bear many general features that should be present for other glasses. This provides strong
motivation to continue the combined investigation by means of IXS and other well established
methods of the high-frequency collective dynamics of topologically disordered materials.
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